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Euclidean field conflguratmns carrying half integral topological charge, merons, can, unhke ordinary lnstantons, 
confine quarks at moderate coupling g. Logarithmic interactions between merons prevent Isolated ones from existing 
for small g. However, m four dimensional QCD a crude calculation mdlcates a phase transition to a quark confining 
plasma at an effective couphng g2/47r2 ~ ¼. 

Recently there has been much interest in finite ac- 
tion, non-trivial solutions of  Euclidean non-abelian 
gauge theories. Polyakov [ 1 ] originally suggested that 
such field configurations might dominate the Euclide- 
an path Integral: 

f exp [-S(A)I, S(A) = (trF FUV d4 x, 
492 a u~ 

in an asymptotically free theory where the effective 
coupling constant g grows large at large distances. 

Until now attention has focused on the "instanton" 
solution of  Euclidean Yang-Mills theory discovered by 
Belavin et al. [2], which minimizes the action in the 
sector with Pontryagin index one. This solution was 
understood to be an indication of  vacuum tunneling 
[3 -5 ]  between an inffmite number of  classically de- 
generate stable vacua. Thus instanton configurations 
are of  fundamental nnportance no matter how small 
the coupling is. One must take them into account in 
order to construct the correct vacuum, which is a co- 
herent superposition of  the classical vacua, labeled by 
a continuous parameter 101 ~< 7r [ 4 -6 ] .  The main 
physical implications of  this vacuum degeneracy has 
been the effect on fermionic symmetries. It was real- 
ized that in a 0 vacuum, axial baryon number symme- 
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1 On leave from Princeton University. 

try is broken without the generation of  a Goldstone 
boson, thereby solving the notorious U(1) problem 
[ 3 - 5 ] .  Other consequences of  the 0-vacua are a possi- 
ble mechanism for T-violation [3 -5 ]  and a possible 
source of  the dynamical breaking of  chiral SU(N) [5]. 

Do instantons play a role in quark confinement? 
We shall argue that their net effect on widely separ- 
ated quarks is a finite mass renormalization. This ar- 
gument is based on the "dilute gas approximation" 
[5], which is only valid for sufficiently weak coupling. 
Thus in an asymptotically free theory, such as QCD, 
one can only conclude with confidence that strong 
coupling (which is highly probable for large distances 
or large instantons) is required to confine quarks. 

Once the effective coupling is not small other than 
minimal action field configurations become important. 
In this note we would like to focus on a particular class 
of  configurations which might play a dominant role in 
quark confinement. These are configurations which 
have two important properties. 

First they correspond to separated lumps of  one- 
half topological charge, with an action (interaction 
energy) that increases only logarithmically with separ- 
ation, and an independent entropy of position for 
each lump proportional to the logarithm of  the volume. 
Thus while the contribution of  such a pair separated 
by a distance R will be suppressed, for small effective 
coupling, by 

R 4 exp [ - ( cons t /g  2) In R ] ,  
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as  ~2 increases (in fact the effective coupling in the 
above action will be evaluated at a scale determined 
by R and will thus increase for increasing R) configu- 
rations with large separation become more probable. 
If  one approximates the path integral by summing 
over such configurations, one obtains the partition 
function for a gas of  merons 4:1 with attractive loga- 
rithmic interactions. Such a system is somewhat analo- 
gous to the two-dimensional Coulomb gas [7]. There 
one expects that at low temperature (weak coupling) 
the system is in a dielectric phase, composed of  a 
weakly interacting gas of  dipole pairs. However, since 
both the energy and entropy of  a pair increase with 
the logarithm of the separation, at higher tempera- 
tures the entropy term in the free energy (F = E -  TS) 
will take over and at some critmal temperature (large 
coupling) isolated charges can appear. The pairs will 
then dissociate and the system will be in the plasma 
phase. 

The second important property of  the configura- 
tions we propose is their effect on quarks. We shall 
argue that if the merons were m a plasma phase then 
they would confine quarks. Since the role of  the tem- 
perature is played by the effective coupling, the sys- 
tem can be in different phases depending on the scale 
of  distances being probed. At short distances the 
merons are tightly bound and have no effect on the 
quarks which are quasi-free. For widely separated 
quarks they behave as a plasma, and although the den- 
sity of merons will be much less than that of  instan- 
tons, they will control the long range propemes of  the 
system and confine the quarks. 

To illustrate these ideas as it is useful to consider 
the two dimensional Abelian Higgs model. This model 
contains instantons which are simply the Nielson- 
Olessen vortices, whose topological charge is propor- 
tional to the magnetic flux. This theory is simple to 
analyze since it is superrenormalizable, and the instan- 
ton size is fixed (proportional to the inverse photon 
mass 34). It is easy to see that, at least for weak cou- 
pling where the dilute gas approximation is valid, the 
model will not confine integrally charged quarks. As a 
measure of  quark confinement one may consider the 

,1 Since these configurations have fractional topological 
charge we propose to call them merons, from the Greek 
root tieOoo meaning part or fraction. See Mero-, Shorter 
Oxford English Dictmnary (Oxford, 1970). We thank A. 
Pats for suggesting this name. 

vacuum expectation value C = (exp ie 5~LAUdxu) 
where L is a Euclidean loop of  spatial extent R and 
time extent T. For large T this is proportional to 
exp [-e(R)T], where e(R) is the energy of  massive 
charged quarks separated by a distance R ,2 .  A linear 
potential between the quarks wdl result if In C is pro- 
portional to the area of the loop (R. T) whereas if In C 
is proportional to the circumference (R + T) then this 
corresponds to a finite mass renormalization. 

In the dilute gas approximation C is evaluated by 
considering the effect of  one instanton. Smce e~AudxV 
equals 2rr (0) if the lnstanton is totally within (without) 
the loop, e(R)T will be proportional to the volume in 
which the instanton overlaps the loop, (I/M)(R + T), 
times the density of  instantons M 2 exp ( -Sc l )  and thus: 

~(R) N Mexp(-Scl) .  (1) 
R~ I/M 

This R-independent interaction energy is simply a 
mass renormalization. An alternate derivation of  this 
result can be obtained by considering Cq = (exp iq X 
fAVdxu). In the dilute gas approximation this is given 
by(V 0 ~ 1/M 2) 

Cq = Iq/I 0 

d2x;  ~-I d2xi - 

Iq = n +, n _ ~ f "~0 i=1 V 0 
(2) 

X exp [ - ( n +  + n_)Scl + i(n+ t - niO2rrq/e]. 

where we sum over configurations with n+ (n_)  in- 
stantons (anti-instantons) and n+_ L is the number of  
such inside the quark loop L. Thus e(R) is simply the 
change in the energy of  the vacuum which occurs if 0 
is equal to zero outside the loop and 2rrq/e inside the 

loop. 
The vacuum energy is periodic in 0 5 , so that for q 

= e (integer charged quarks) one gets only a surface 
contribution to e(R), leading to eq. (1). If, however, 

,2 The physical reason that the lnstantons confine m 2 di- 
mensions is that they are responsible for restoring a dis- 
crete gauge mvariance to the theory. This then wipes out 
the Higgs phenomenon (<¢> = 0) and although the vector 
meson acquires a mass there then exists a long range Cou- 
lomb interaction between charged sources. This then will 
confine fractional charges, but not integer charged sources 
whmh can bind to charged scalars. 

376 



Volume 66B, number 4 PHYSICS LETTERS 14 February 1977 

q/e ~ 1 (mod 1), then there is a volume dependence 
of  the vacuum energy, and 

tion one can easily evaluate the (ordered) loop inte- 
gral' 

e(R) T ~ exp (-Sel)(1 - cos 27rq/e)RT/V O. (3) 

Thus fractionally charged quarks are confined. Now 
note that confinement would also obtain if there 
existed isolated mstanton configurations with half- 
integral flux. The insertion of  a quark loop in a plas- 
ma of  half-fluxons has the same effect of  forcing 0 to 
be equal to 7r inside the loop - thus prowding an ener- 
gy proportional to RT. Furthermore ff the half-fluxons 
had an interaction (action) which only increased loga- 
rithmically say Scl(R ) ~ g2 In R, then for a pair of  
such half-fluxons we would get 

e(R)T~ f d2x + f d2x - e x p [ - g - 2 1 n R ]  

Ix+l<R Ix-I>R 
(4) 

TR 3 _g-2 

which would confine i fg  2 >/ I  
Now in point of  fact it is impossible to find such 

configurations in the two-dimensional Higgs model. If  
one considers lumps of  flux one half separated by a 
distance R they must be connected by a string-like 
region in which the phase of  the Higgs fields changes 
from zero to 7r. This gives rise to an action that in- 
creases linearly with R, and thus the lumps never sep- 
arate (alternatively in the dilute gas approximation the 
interaction energy of  quarks due to such a configura- 
tion behaves as Re-eonstR).  However, in four dimen- 
sional non-abelian gauge theories we shall show that 
configurations of  this type do exist, with only loga- 
rithmic action and with equal power to confine quarks. 

We shall now demonstrate that instantons by them- 
selves do not confine quarks, at least as long as the ef- 
fective coupling remains small enough to reliably re- 
place the Euclidean functional integral by the partition 
function of  a gas of  instantons. In our analog gas an 
instanton of  scale size p = 1/X has a chemical potential 
exp (-B/a) = exp (-8rr2/~2(;~//a)) ~ = renormalization 
scale parameter) and an entropy of  position ¢a = 
0.52 d4x do/p5(g2[87r2) 4. In the dilute gas approxima- 

,3 The evaluation of the determinant which give this expres- 
sion is due to G. 't Hooft, ref. [3]. The reason that the en- 
tropy is proportional to d4xdp/(g2p) 4 is because it suffices 
to shift the orientation, scale size or location by g, gp or 
gp to obtain a physically distinguishable configuration. 

=- ( t r (T exp __!fAudx)>/( I > C L 
L 

for a loop L in the z - t  plane. In the A 0 = 0 gauge only 
the spacelike segments, sat at t = 0 and t = T, contrib- 
ute to the integral and an instanton will only contrib- 
ute if it is located at time t I 0 ~< t I ~< T (otherwise it 
behaves like a pure gauge on the whole loop). For 
T>>R, we can replace A z by 

(x) U-1  Z z = (x - xi)~ z U(x - xI) 

where 

U(x)={ exp[ilr~'x/V~+p2]l tt=oT}" 

Since U (r) is equal to - 1  when [xl >> p, one gets a con- 
tribution to C L only from instantons whose spatial ex- 
tent overlaps with just one of  the charged sources. 
Thus the interaction energy between two charged 
sources at distance R is 

Ixl<p (5) 

Since this integral converges as R ~ ~o, instantons do 
not confine quarks. One can, in principle, include the 
effects of  instanton-anti-instanton interactions. How- 
ever, these are rather short range [6] and we do not 
expect them to alter the conclusion. 

For sufficiently large R the effectwe coupling, 
~2(1//.tR)/87r2, might grow too large for such a weak 
coupling approximation to make sense. However, we 
believe that before this occurs other field configura- 
tions will become important, and can lead to confine- 
ment even for effective couplings sufficiently small 
that semi-classical considerations are still rehable. 

The configurations that we believe control the be- 
havior of  the quark loop consist of  isolated lumps of  
one-half unit of  topological charge, merons, whose 
positions are arbitrary and whose action only increases 
logarithmically with separation. To illustrate the ef- 
fect of  such configurations on the quark loop we shall 
exhibit a singular configuration of  this sort. Consider 
the ansatz for the gauge field (for SU2) 
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a a u = (eOauv + ~eab cebcu v) by In P (x). (6) 

The Yang-Mills equations are then equivalent to ~P = 
Cp 3 (C is an arbitrary constant [8]. In particular 

p(x )  = [(X - Xl)2(X - X2 )2] - 1 / 2 ,  (7) 

yields a solution of the field equations everywhere 
except the singular points x i [12]. As noted in ref. [9], 
this solution has the property that the topological 
charge density is given by 

Q(x) = (1/16rr 2) tr [FvFuv] 

= -} [8 (4)(x - Xl) + 8 (4)(x - Xa) l , 
(8) 

corresponding to two point merons. The action of this 
solution is infinite, due to the fact that the field is sin- 
gular at x i. However, this singularity can easily be re- 
moved by smearing the topological charge over a 
small sphere. It is then easy to see that the action will 
be proportional to (1/g2) In (x 1 -x2)2 ,  for large sep- 
aration. These point merons are then analogous to 
point one-half fluxons of the type which we discussed 
above. If  one were to neglect their logarithmic interac- 
tion they would confine quarks. This is easily seen 
once again by evaluating C L in the A 0 = 0 gauge. An 
individual meron will give a non-trivial phase now if it 
is located at 0 @ t ,~ T and is no further than R from 
the loop leading to an energy between fixed quark 
sources which increases rapidly ( - R  3) with increasing 
/~ Now, of course, the meron interaction cannot be 
neglected. However, we shall argue below that its coef- 
ficient is proportional to (~-)-2(1/p.R), and for large 
enough R such that g-2/8rr2 ~ 2-~ the energy will in- 
crease, thus leading to confinement for an effective 
coupling sufficiently small that our semi-classical argu- 
ments might still be valid. 

Having seen that merons can confine quarks let us 
now discuss how they could be treated in a systematic 
way. For small coupling one is used to approximating 
the Euclidean functional integral by a saddle point 
approximation. However, in general, the dominant 
contributions do not come from strict minima of the 
action, even in the case of instantons alone, since we 
must include multiple instanton-anti-instanton con- 
figurations which are not solutions of the equations 
of motion. In an infinite volume system the most im- 

portant configurations are those for which the action 
is not too far from a minimum and for which the 
entropy is large. Such configurations occupy a large 
volume in function space, thus compensating for the 
fact that the action is not minimal. 

The entropy associated with instantons, and with 
merons, comes from the fact that they are localized 
lumps of topological charge whose position is arbitrary 
From the point of view of entropy the important vari- 
able is therefore the topological charge density Q(x). 
We propose to define an effective field theory for 
Q(x) by integrating over the gauge field and holding 
Q(x) fixed, and only then integrating over Q(x). The 
vacuum to vacuum amplitude would be f[dQ] e-W(o ) 
where 

exp [ - w ( o ) ]  = f[q~A~] 
X I-Is [Q(x) 1 x 16f i  trFuvFuv] exp [ -S(A)] ,  

with suitable gauge fixing and ghost terms implied. We 
can now imagine performing the A~, integral by a 
straight forward saddle point approximation and then 
integrating over Q(x) by more sophisticated methods. 
In first approximation W would be the minimum ac- 
tion for fields that satisfy the constraint and can be 
calculated by adding m the action a Lagrange multi- 
plier (1/4g2)X (x) tr FF ~olving the modified field 
equations DUFuv + ~UXFuv = 0 and adjusting 3,(x) to 
obtain the desired Q(x). 

Of course, one would still have to perform the func- 
tional integral of e -w(O). Our purpose here is to sug- 
gest a program of studying this approximate field 
theory for Q(x) and show how it could lead to con- 
finement. The idea is to replace the Q-field theory by 
an analog model consisting of  a gas of instantons and 
merons. Such a replacement can only be approximate, 
but our hope is that the model retains those degrees 
of freedom which are responsible for confinement. 

The merons are most easily found by searching for 
minima of S subject to the constraint that the integral 
of Q(x) over a given volume is equal to ½. This can be 
achieved by taking Lagrange multipliers which are 
piecewise constant. Spherically symmetric configura- 
tions of this type are easy to construct. In the ansatz 
of eq. 6 let p = p (r = In x, lx2/r), with arbitrary scale r, 
and define ~(r) = - ( o ' / p  + I)where prime denotes 
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differentiation with respect to r.  In terms of  q~ the 
action is 

s -- d r [~ ,2  + (~2 _ 1)21, 

and the topological charge density is (6~2/g2)~ ' (1-~2) .  
The Yang-Mills equations are then equivalent to a par- 
ticle in the potential  - ( 1  - q~2)2 whose velocity can 
change discontinuously at any r where the Lagrange 
multiplier X(r) is discontinuous. The function q~(r) 
must be continuous and approach -* 1 at r = -+~ to 
yield a finite action. The standard instanton is the 
solution which proceeds from - 1  at r = - ~ ,  to + 1 at 
r ; +~" 4~(r) = th r. Now consider a trajectory that 
leaves ~ = - 1  at r = - ~  and arrives at the stable mira- 
mum ~ ; 0 at r = 0 at which point  its velocity is dis- 
continuously brought to zero. Then at r = In R/r it is 
given a velocity kick (A~'  = 1) to make it arrive at 
= + 1 at r = oo. Such a configuration consists of  one- 
half of  an instanton with half  a unit  of  topological 
charge in the region x 2 ~< r 2, another half  unit  in the 
region x 2 t> R 2 and zero charge density for r 2 ~<x 2 
~< R 2. Thus we have constructed a meron at x = 0 
and another at x = oo. A more physical configuration 
is obtained by performing an inversion about  a point  
au, with a 2 = rR. Taking (x -a) u -~ rR {(x - a)U/(x-a) 2} 
yields for R >> ra meron of  size r located at the origin 
and another one of  the same size at D = x/rR away. 
The topological charge is confined to two small 
spheres, each of  size r, containing half  a unit.  In a sim- 
ilar fashion one can construct  configurations with 
and -~- topological charges in the small spheres. 

The classical action (unrenormalized) for such con- 
figuration is equal to (szrE/g~) [1 +43- In D/r]. This con- 
sists of  a term 41r2/g 2 from integrating over each 
sphere whicla represents the (bare) chemical potential  
of  a meron and a term (6~r2/g 2) In D/r which repre- 
sents the (bare) interaction energy of  a pair of  merons 
of  size r separated by a distance D. To determine the 
entropy of  a meron at x = 2 as well as the renormaliza- 
tion o f g  0 we must perform a Gaussian functional in- 
tegral about  a pair of  merons. For  fixed Q(x) these 
are minima of  S. However, there exist, upon  relaxing 
the constraint,  directions in function space in which 
S decreases and which do not  correspond to varying 
the collectwe coordinates (~, r, D). One can already 
see this instability developing in the radically symmet- 

ric ansatz. When D/r is big enough one can construct a 
configuration with smaller action by considering a 
trajectory which is given a very small kick at r = 0 
(¢ = 0), so that it oscillates in the potential  well with 
a period In (D/r)/N, and then after Nosci l la t ions  is 
gwen another kick to enable it to approach ~ = +1 at 
r = ~ .  In such a configuration Q(x) oscillates between 
r = 0 and r = In D/r, corresponding to a nested set of  
ordinary instantons and anti-instantons between the 
merons. We claim that such modes will be automati-  
cally taken into account in a more systematic proce- 
dure by allowing for arbitrary superpositions of  in- 
stantons and anti-instantons, and that therefore there 
is no need to introduce additional collective coordi- 
nates. 

Examination of  the functional integral about a pair 
of  merons indicates that the renormalization length 
for the chemical potential  is r, so that exp (-/3/a) = 
exp( -47r2 /~  2(1/rla)), and for the interaction energy is 
D, so that  the interaction energy of  merons of  sizes r 
and r '  and separated by D (for D >> r, r ' )  is 

exp (-/~V) = exp [ -  67r2 lnD/x/'-~-rl. 
g2(1/pD) 

The entropy of  merons we estimate to be C(d4xdr/r 5) 
× (87r2/~2) 4 where C ~ 1. Note that the apparent  d i -  
vergence as r -+ 0 is removed by asymptot ic  freedom, 
since exp (-/3/1) for a ineron of  size r (for the gauge 
group SU(2)) vanishes like r 11/2 as r -~ 0. 

Why do we restrict our at tent ion to meron configu- 
rations and not  consider isolated lumps of  arbitrary 
fractional charge? It is clear that these would be as 
effective in producing confinement.  The reason is that  
although one can easily construct such configurations 
with logarithmic interaction energy, it appears to be 
impossible to superimpose them in such a way as to 
obtain an independent  entropy of  volume for each 
lump. Consider an arbitrary field configuration which 
has an iso la ted  lump of  topological charge at the origin 
(tr FF < 1/r 4 for large r). The gauge field ( in  a non- 
singular gauge) must behave as 1/r at large distances. 
Now for an instanton the 1/r term is a pure gauge, and 

for a meron the 1/r term is a solution of  the Yang- 
Mills equations. Lumps with other than one half  
charge require a 1/r term which does not  satisfy the 
classical equations, thus leading to the problem de- 
scribed above. 
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We shall now discuss how the merons confine 
quarks and estimate the critical value of the effective 
coupling. If  the gas of instantons and merons was suf- 
ficiently dilute one might perform a calculation of 
C L as before. Now we would consider the effect on 
the quark loop of a pair of merons a tx  1 and x 2. A 
non-trivial phase will obtain if one meron is inside 
the loop, the other outside. Integrating over the vol(Jme 
occupied by the merons outside the loop then yields 
(dropping irrelevant terms): 

e(R) ~ f d3x dr/r 
Ixl<R 

(9) 
X exp [-4~'2/g2(1/tar)] R 4-&r2/~(1/~R). 

Thus the interaction energy begins to grow with R 
when ~2/81r2 (1/R/a) = ~ .  At this coupling the den- 
sity of instantons is still reasonably small, i.e. 
0.52 ex [-(81r2/~2)] (8~r2/g2) 4 = 0.35. When g2/8rr2 
= ~, e(R) becomes linear; however, the density of in- 
stantons increases to 0.72. Thus confinement may be 
occurring for relatively weak coupling. However, one 
must improve on the above argument, taking into 
account instanton and meron interactions. 

At low temperature = coupling constant, the merons 
will be tightly bound and indistinguishable from in- 
stanton configurations. To see whether a phase transi- 
tion would take place one could carry out a mean field 
approximation by considering the screening effect of  
an instanton or a tightly bound meron-anti-meron 
pair on a well separated pair. In this highly non-linear 
gas the interactions are quite complicated, however, in 
a crude approximation the gas is analogous to a dielec- 
tric medium of quadrapolar objects. With this analogy 
we can estimate the transition temperature = ~2, at 
which a transition to a plasma-like phase will occur, i.e. 
when pairs will dissociate and uncorrelated merons 
can be created. The mean field static dielectric con- 
stant e (q2 = 0) is proportional to (D4), where D is the 
separation of the merons in a pair. The phase transi- 
tion will occur when 

e(q2=O)~(D4),~fd4DD4exp[ 61r2 l n D l  
g2(1//zD) 

diverges, which occurs at ~2/8rr2 = ~ .  (Note that for 
this g the density of instantons is so small, 0.17, that 
this estimate might be meaningful. Furthermore dimen- 

sional reasoning suggests that e(q 2) develops a pole, 
1/q 2, when (D 2) diverges, thus leading to exponential 
screening. This occurs at g2/8rr2 = { which happens to 
coincide with our previous estimate, based on the 
quark loop, of when the quark-antiquark interaction 
energy becomes linear. 

Much work clearly remains in developing all stages 
of our program. However, it might be useful even at 
this stage, to consider the phenomenological implica- 
tions of our mechanism. The critical value of the cou- 
pling, g2/81r2 = ~-, which leads to confinement, is essen- 
tially the value of the effective coupling at a distance 
corresponding to the size of the hadron, in units of 
the renormalization scale parameter. What is remarka- 
ble is that such a small coupling, where semi-classical 
arguments and low order perturbation theory are still 
valid, can confine quarks. We also note that the value 
g2/4n2 ~ ~ is consistent with the observed departures 
from asymptotic freedom. 

We are obviously far from being able to calculate 
hadronic masses (the acid test of a theory ofhadrons), 
however, one might speculate that our mechanism 
would lead to a phenomenological model similar to 
the MIT bag. In a system with more than one phase 
one can have localized regions in the "wrong" phase 
(e.g. bubbles in a liquid) at a cost of some energy per 
unit volume which may be compensated by other ef- 
fects. In the presence of (separated) quarks our 
Euclidean gas may find it favorable to be in a dielec- 
tric phase (in a cylindrical region along the "time" 
axis) at a cost in action of BV.T, where B is some 
constant energy per unit volume. The quarks would 
be almost free particles inside this region. Since for 
g2/8rr2 in the range ~ to ~- the density of instantons 
is increasing extremely rapidly one might expect the 
transition from the dielectric-asymptotic freedom 
phase to the plasma-confining phase to be rather 
abrupt, thus producing an effective "bag" with a sharp 
boundary. Elaboration of this idea might allow one to 
develop a bag whose parameters, range of validity and 
dynamics would be calculable. 

Finally, we note that our confinement mechanism is 
special to non-abelian gauge theories. Not only do we 
rely heavily on the asymptotic freedom and infra-red 
slavery of QCD, but in addition we require meron con- 
figurations which satisfy the Euclidean equations of 
motion except in small regions and have Fay ~ 1/r 2 
at large distances, thus giving rise to long range corre- 
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lations in (A(x)A (y))  which make the quark  loop be- 

have as exp ( - R T ) .  Such conf igurat ions  do no t  exist  

in Abel ian theories.  

References  

[1] A.M. Polyakov, Phys. Lett. 59B (1975) 82. 
[2] A.A. Belavm et al., Phys. Lett. 59B (1975) 85. 
[3] G. ' t  Hooft, Phys. Rev. Lett. 37 (1976) 8; Harvard pre- 

print (1976). 
[4] R. Jackiw and C. Rebbl, Phys. Rev. Lett. 37 (1976) 172. 

[5] C.G. Callan, R.F. Dashen and D.J. Gross, Phys. Lett. 
63B (1976) 334. 

[6] C.G. Callan, R.F. Dashen and D.J. Gross, to be published. 
[7] For a discussion of the two-dimensional Coulomb gas see 

J.M. Kosterhtz and D.J. Thouless, J. Phys. C6 (1973) 
1181. We have used a similar analogy in discussing the in- 
stanton dynamics of the two-dimensional Higgs model 
with massless quarks, C. Callan, R. Dashen, D. Gross, to 
be published. 

[8] F. Wdczek, Princeton Univ. preprint (1976); 
Corrigan and Fairlie, preprint (1976); 
G. 't Hooft, unpublished. 

[9] V. De Alfaro, S. Fubini and G. Furlan, CERN preprint 
2232 (1976). 

381 


